A Two-Stage Tree based Meta-Classifier using Stack-Generalization

نویسنده

  • B. Kalpana
چکیده

Given a choice of classifiers each performing differently on different datasets the best option to assume is an ensemble of classifiers. An ensemble uses a single learning algorithm, whereas in this paper we propose a two stage stacking method with decision tree c4.5 as meta classifier. The base classifiers are Naïve Bayes, KNN and C4.5 tree. The decision tree learns from the classification output given by base classifiers after feature selection in the first stage on training data. The second stage classifies the test data using meta classifier. We prove that our algorithm provides better classification accuracy with UCI datasets. General terms: Data mining, Classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers

Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...

متن کامل

Creating diversity in ensembles using artificial data

The diversity of an ensemble of classifiers is known to be an important factor in determining its generalization error. We present a new method for generating ensembles, Decorate (Diverse Ensemble Creation by Oppositional Relabeling of Artificial Training Examples), that directly constructs diverse hypotheses using additional artificially-constructed training examples. The technique is a simple...

متن کامل

Voltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm

A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...

متن کامل

XCS with Stack-Based Genetic Programming

We present an extension of the learning classifier system XCS in which classifier conditions are represented by RPN expressions and stack-based Genetic Programming is used to recombine and mutate classifiers. In contrast with other extensions of XCS involving tree-based Genetic Programming, the representation we apply here produces conditions that are linear programs, interpreted by a virtual s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011